26 research outputs found

    Steroid receptor coactivator-1 modulates the function of Pomc neurons and energy homeostasis

    Get PDF
    Hypothalamic neurons expressing the anorectic peptide Pro-opiomelanocortin (Pomc) regulate food intake and body weight. Here, we show that Steroid Receptor Coactivator-1 (SRC-1) interacts with a target of leptin receptor activation, phosphorylated STAT3, to potentiate Pomc transcription. Deletion of SRC-1 in Pomc neurons in mice attenuates their depolarization by leptin, decreases Pomc expression and increases food intake leading to high-fat diet-induced obesity. In humans, fifteen rare heterozygous variants in SRC-1 found in severely obese individuals impair leptin-mediated Pomc reporter activity in cells, whilst four variants found in non-obese controls do not. In a knock-in mouse model of a loss of function human variant (SRC-1L1376P), leptin-induced depolarization of Pomc neurons and Pomc expression are significantly reduced, and food intake and body weight are increased. In summary, we demonstrate that SRC-1 modulates the function of hypothalamic Pomc neurons, and suggest that targeting SRC-1 may represent a useful therapeutic strategy for weight loss.Peer reviewe

    Low-frequency variation in TP53 has large effects on head circumference and intracranial volume.

    Get PDF
    Cranial growth and development is a complex process which affects the closely related traits of head circumference (HC) and intracranial volume (ICV). The underlying genetic influences shaping these traits during the transition from childhood to adulthood are little understood, but might include both age-specific genetic factors and low-frequency genetic variation. Here, we model the developmental genetic architecture of HC, showing this is genetically stable and correlated with genetic determinants of ICV. Investigating up to 46,000 children and adults of European descent, we identify association with final HC and/or final ICV + HC at 9 novel common and low-frequency loci, illustrating that genetic variation from a wide allele frequency spectrum contributes to cranial growth. The largest effects are reported for low-frequency variants within TP53, with 0.5 cm wider heads in increaser-allele carriers versus non-carriers during mid-childhood, suggesting a previously unrecognized role of TP53 transcripts in human cranial development

    The UK10K project identifies rare variants in health and disease

    Get PDF
    M. Kivimäki työryhmäjäsen.The contribution of rare and low-frequency variants to human traits is largely unexplored. Here we describe insights from sequencing whole genomes (low read depth, 7x) or exomes (high read depth, 80x) of nearly 10,000 individuals from population-based and disease collections. In extensively phenotyped cohorts we characterize over 24 million novel sequence variants, generate a highly accurate imputation reference panel and identify novel alleles associated with levels of triglycerides (APOB), adiponectin (ADIPOQ) and low-density lipoprotein cholesterol (LDLR and RGAG1) from single-marker and rare variant aggregation tests. We describe population structure and functional annotation of rare and low-frequency variants, use the data to estimate the benefits of sequencing for association studies, and summarize lessons from disease-specific collections. Finally, we make available an extensive resource, including individual-level genetic and phenotypic data and web-based tools to facilitate the exploration of association results.Peer reviewe

    Germline selection shapes human mitochondrial DNA diversity.

    Get PDF
    Approximately 2.4% of the human mitochondrial DNA (mtDNA) genome exhibits common homoplasmic genetic variation. We analyzed 12,975 whole-genome sequences to show that 45.1% of individuals from 1526 mother-offspring pairs harbor a mixed population of mtDNA (heteroplasmy), but the propensity for maternal transmission differs across the mitochondrial genome. Over one generation, we observed selection both for and against variants in specific genomic regions; known variants were more likely to be transmitted than previously unknown variants. However, new heteroplasmies were more likely to match the nuclear genetic ancestry as opposed to the ancestry of the mitochondrial genome on which the mutations occurred, validating our findings in 40,325 individuals. Thus, human mtDNA at the population level is shaped by selective forces within the female germ line under nuclear genetic control, which ensures consistency between the two independent genetic lineages.NIHR, Wellcome Trust, MRC, Genomics Englan

    Four patients with Sillence type I osteogenesis imperfecta and mild bone fragility, complicated by left ventricular cardiac valvular disease and cardiac tissue fragility caused by type I collagen mutations

    No full text
    Osteogenesis imperfecta (OI) type I is a hereditary disorder of connective tissue (HDCT) characterized by blue or gray sclerae, variable short stature, dentinogenesis imperfecta, hearing loss, and recurrent fractures from infancy. We present four examples of OI type I complicated by valvular heart disease and associated with tissue fragility. The diagnosis of a type I collagen disorder was confirmed by abnormal COL1A1 or COL1A2 gene sequencing. One patient was investigated with electrophoresis of collagens from cultured skin fibroblasts, showing structurally abnormal collagen type I, skin biopsy showed unusual histology and abnormal collagen fibril ultra-structure at electron microscopy. The combined clinical, surgical, histological, ultra-structural, and molecular genetic data suggest the type I collagen defect as contributory to cardiac valvular disease. The degree of tissue fragility experienced at cardiac surgery in these individuals, also reported in a small number of similar case reports, suggests that patients with OI type I need careful pre-operative assessment and consideration of the risks and benefits of cardiac surgery. © 2013 Wiley Periodicals, Inc

    Four patients with Sillence type I osteogenesis imperfecta and mild bone fragility, complicated by left ventricular cardiac valvular disease and cardiac tissue fragility caused by type I collagen mutations.

    No full text
    Osteogenesis imperfecta (OI) type I is a hereditary disorder of connective tissue (HDCT) characterized by blue or gray sclerae, variable short stature, dentinogenesis imperfecta, hearing loss, and recurrent fractures from infancy. We present four examples of OI type I complicated by valvular heart disease and associated with tissue fragility. The diagnosis of a type I collagen disorder was confirmed by abnormal COL1A1 or COL1A2 gene sequencing. One patient was investigated with electrophoresis of collagens from cultured skin fibroblasts, showing structurally abnormal collagen type I, skin biopsy showed unusual histology and abnormal collagen fibril ultra-structure at electron microscopy. The combined clinical, surgical, histological, ultra-structural, and molecular genetic data suggest the type I collagen defect as contributory to cardiac valvular disease. The degree of tissue fragility experienced at cardiac surgery in these individuals, also reported in a small number of similar case reports, suggests that patients with OI type I need careful pre-operative assessment and consideration of the risks and benefits of cardiac surgery
    corecore